73 research outputs found

    Switching in Feedforward Control of Grip Force During Tool-Mediated Interaction With Elastic Force Fields

    Get PDF
    Switched systems are common in artificial control systems. Here, we suggest that the brain adopts a switched feedforward control of grip forces during manipulation of objects. We measured how participants modulated grip force when interacting with soft and rigid virtual objects when stiffness varied continuously between trials. We identified a sudden phase transition between two forms of feedforward control that differed in the timing of the synchronization between the anticipated load force and the applied grip force. The switch occurred several trials after a threshold stiffness level in the range 100–200 N/m. These results suggest that in the control of grip force, the brain acts as a switching control system. This opens new research questions as to the nature of the discrete state variables that drive the switching

    Tactile-STAR: A Novel Tactile STimulator And Recorder System for Evaluating and Improving Tactile Perception

    Get PDF
    Many neurological diseases impair the motor and somatosensory systems. While several different technologies are used in clinical practice to assess and improve motor functions, somatosensation is evaluated subjectively with qualitative clinical scales. Treatment of somatosensory deficits has received limited attention. To bridge the gap between the assessment and training of motor vs. somatosensory abilities, we designed, developed, and tested a novel, low-cost, two-component (bimanual) mechatronic system targeting tactile somatosensation: the Tactile-STAR—a tactile stimulator and recorder. The stimulator is an actuated pantograph structure driven by two servomotors, with an end-effector covered by a rubber material that can apply two different types of skin stimulation: brush and stretch. The stimulator has a modular design, and can be used to test the tactile perception in different parts of the body such as the hand, arm, leg, big toe, etc. The recorder is a passive pantograph that can measure hand motion using two potentiometers. The recorder can serve multiple purposes: participants can move its handle to match the direction and amplitude of the tactile stimulator, or they can use it as a master manipulator to control the tactile stimulator as a slave. Our ultimate goal is to assess and affect tactile acuity and somatosensory deficits. To demonstrate the feasibility of our novel system, we tested the Tactile-STAR with 16 healthy individuals and with three stroke survivors using the skin-brush stimulation. We verified that the system enables the mapping of tactile perception on the hand in both populations. We also tested the extent to which 30 min of training in healthy individuals led to an improvement of tactile perception. The results provide a first demonstration of the ability of this new system to characterize tactile perception in healthy individuals, as well as a quantification of the magnitude and pattern of tactile impairment in a small cohort of stroke survivors. The finding that short-term training with Tactile-STARcan improve the acuity of tactile perception in healthy individuals suggests that Tactile-STAR may have utility as a therapeutic intervention for somatosensory deficits

    Design and Validation of a Bimanual Haptic Epidural Needle Insertion Simulator

    Full text link
    The case experience of anesthesiologists is one of the leading causes of accidental dural puncture and failed epidural - the most common complications of epidural analgesia. We designed a bimanual haptic simulator to train anesthesiologists and optimize epidural analgesia skill acquisition, and present a validation study conducted with 15 anesthesiologists of different competency levels from several hospitals in Israel. Our simulator emulates the forces applied on the epidural (Touhy) needle, held by one hand, and those applied on the Loss of Resistance (LOR) syringe, held by the second hand. The resistance is calculated based on a model of the Epidural region layers that is parameterized by the weight of the patient. We measured the movements of both haptic devices, and quantified the rate of results (success, failed epidurals and dural punctures), insertion strategies, and answers of participants to questionnaires about their perception of the realism of the simulation. We demonstrated good construct validity by showing that the simulator can distinguish between real-life novices and experts. Good face and content validity were shown in experienced users' perception of the simulator as realistic and well-targeted. We found differences in strategies between different level anesthesiologists, and suggest trainee-based instruction in advanced training stages.Comment: 12 pages, 11 figure

    Neglect-Like Effects on Drawing Symmetry Induced by Adaptation to a Laterally Asymmetric Visuomotor Delay

    Get PDF
    In daily interactions, our sensorimotor system accounts for spatial and temporal discrepancies between the senses. Functional lateralization between hemispheres causes differences in attention and in the control of action across the left and right workspaces. In addition, differences in transmission delays between modalities affect movement control and internal representations. Studies on motor impairments such as hemispatial neglect syndrome suggested a link between lateral spatial biases and temporal processing. To understand this link, we computationally modeled and experimentally validated the effect of laterally asymmetric delay in visual feedback on motor learning and its transfer to the control of drawing movements without visual feedback. In the behavioral experiments, we asked healthy participants to perform lateral reaching movements while adapting to delayed visual feedback in either left, right, or both workspaces. We found that the adaptation transferred to blind drawing and caused movement elongation, which is consistent with a state representation of the delay. However, the pattern of the spatial effect varied between conditions: whereas adaptation to delay in only the left workspace or in the whole workspace caused selective leftward elongation, adaptation to delay in only the right workspace caused drawing elongation in both directions. We simulated arm movements according to different models of perceptual and motor spatial asymmetry in the representation of delay and found that the best model that accounts for our results combines both perceptual and motor asymmetry between the hemispheres. These results provide direct evidence for an asymmetrical processing of delayed visual feedback that is associated with both perceptual and motor biases that are similar to those observed in hemispatial neglect syndrome

    An uncontrolled manifold analysis of arm joint variability in virtual planar position and orientation tele-manipulation

    Get PDF
    Objective: In teleoperated robot-assisted tasks, the user interacts with manipulators to finely control remote tools. Manipulation of robotic devices, characterized by specific kinematic and dynamic proprieties, is a complex task for the human sensorimotor system due to the inherent biomechanical and neuronal redundancies that characterize the human arm and its control. We investigate how master devices with different kinematics structures and how different task constraints influence users capabilities in exploiting arm redundancy. Methods: A virtual teleoperation workbench was designed and the arm kinematics of seven users was acquired during the execution of two planar virtual tasks, involving either the control of position only or position-orientation of a tool. Using the UnControlled Manifold Analysis of arm joint variability we estimated the logarithmic ratio between task irrelevant and the task relevant manifolds (Rv). Results: The Rv values obtained in the position-orientation task were higher than in the position only task while no differences were found between the master devices. A modulation of Rv was found through the execution of the position task and a positive correlation was found between task performance and redundancy exploitation. Conclusion: Users exploited additional portions of arm redundancy when dealing with the tool orientation. The Rv modulation seems influenced by the task constraints and by the users possibility of reconfiguring the arm position. Significance: This work advances the general understanding of the exploitation of arm redundancy in complex tasks, and can improve the development of future robotic devices

    Task Dynamics of Prior Training Influence Visual Force Estimation Ability During Teleoperation

    Full text link
    The lack of haptic feedback in Robot-assisted Minimally Invasive Surgery (RMIS) is a potential barrier to safe tissue handling during surgery. Bayesian modeling theory suggests that surgeons with experience in open or laparoscopic surgery can develop priors of tissue stiffness that translate to better force estimation abilities during RMIS compared to surgeons with no experience. To test if prior haptic experience leads to improved force estimation ability in teleoperation, 33 participants were assigned to one of three training conditions: manual manipulation, teleoperation with force feedback, or teleoperation without force feedback, and learned to tension a silicone sample to a set of force values. They were then asked to perform the tension task, and a previously unencountered palpation task, to a different set of force values under teleoperation without force feedback. Compared to the teleoperation groups, the manual group had higher force error in the tension task outside the range of forces they had trained on, but showed better speed-accuracy functions in the palpation task at low force levels. This suggests that the dynamics of the training modality affect force estimation ability during teleoperation, with the prior haptic experience accessible if formed under the same dynamics as the task.Comment: 12 pages, 8 figure
    • …
    corecore